Block 1I/0 Layer Tracing:
blktrace

Gelato — Cupertino, CA
April 2006

Alan D. Brunelle

Hewlett-Packard Company

Open Source and Linux Organization
Scalability & Performance Group

Alan.Brunelle@hp.com

Introduction

e Blktrace — overview of a new Linux capability

— Ability to see what's going on inside the block 1/0
layer

* “You can't count what you can't measure”

- Kernel implementation

— Description of user applications

* Sample Output & Analysis

Problem Statement

* Need to know the specific operations performed
upon each 1/0 submitted into the block I/O layer

e Who?

— Kernel developers in the 1/O path:
* Block I/0O layer, 1/0 scheduler, software RAID, file system, ...
— Performance analysis engineers — HP OSLO S&P...

Block I/0 Layer (simplified)

10stat

* The 10stat utility does provide information
pertaining to request queues associated with
specifics devices

— Average I/O time on queue, number of merges, number of
blocks read/written, ...

* However, it does not provide detailed information
on a per-1/0 basis

Blktrace — to the rescue!

* Developed and maintained by Jens Axboe (block I/0 layer
maintainer)

— My additions included adding threads & utility splitting, DM remap
events, blkrawverify utility, binary dump feature, testing,
kernel/utility patches, and documentation.

* Low-overhead, configurable kernel component which emits events

for specific operations performed on each I/O entering the block
I/O layer

e Set of tools which extract and format these events

However, blktrace 1s not an analysis tool!

Feature List

Provides detailed block layer information concerning individual I/Os

Low-overhead kernel tracing mechanism

- Seeing less than 2% hits to application performance in relatively stressful 1/0 situations

Configurable:

— Specify 1 or more physical or logical devices
(including MD and DM (LVM2))

- User-selectable events — can specify filter at event acquisition and/or
when formatting output

Supports both “live” and “playback” tracing

Events Captured

Request queue entry allocated ® Request issued to underlying

: block dev
Sleep during request queue
allocation * Request queue plug/unplug op
Request queue 1nsertion * [/O split/bounce operation

Front/back merge of I/0 on * [/O remap
request queue _ MD or DM

Re-queue of a request * Request completed

blktrace: General Architecture

I/O

I/0

o

Per Dev

Events |

Emitted /

A

Kernel Space User Space

blktrace Utilities

* blktrace: Device configuration, and event
extraction utility
— Store events 1n (long) term storage

— Or, pipe to blkparse utility for live tracing

* Also: networking feature to remote events for parsing on another
machine

* blkparse: Event formatting utility

— Supports textual or binary dump output

10

blktrace: Event Output

Dev <mjr, mnr> |

% bl ktrace -d /dev/sda -o - | bl kparse -i - y
8,0 3 1 0.000000000 697 G W 223490 + 8
8, 0 2 0.000001829 697 P R [kj our nal d]
~ 8,03 3 0.000002197 697 Q W223490 + 8 [kj ournal d]
/8,0 3 4 0.000005533 697 M W 223498 + 8 [Kj ournal d]
8,0 3 5 0.000008607 697 M W 223506 + 8 [Kj ournal d]
8,0 3 10 0.000024062 D W223490 + 56 [kjournal d]
8,0 1 11 0.009507758 ,0 C W223490 + 56 [0]
A 4 / A\ o -
/ - / ~ T —
Sequence - (\
Number Time | Start block + number of blocks

11

Q&

&,
<e6§é:Q§
o

O

&
“ow (s%iw)

Reads Queued: 0, OKiB Wites Queued:
Read Di spat ches: 0, OKiB Wite D spatches:
Reads Requeued: 0 Wites Requeued:
Reads Conpl et ed: 0, OKiB Wites Conpl eted:
Read Merges: 0 Wite Merges:
Read dept h: 2 Wite depth:
| O unpl ugs: 414 Ti mer unpl ugs:

CPU3 (sdao):
Reads Queued: 105, 18KiB Wites Queued:
Read Di spat ches: 22, 60KiB Wite D spatches:
Reads Requeued: 0 Wites Requeued:
Reads Conpl et ed: 22, 60KiB Wites Conpl et ed:
Read Mer ges: 83 Wite Merges:
Read dept h: 2 Wite depth:
| O unpl ugs: 287 Ti mer unpl ugs:

Total (sdao):
Reads Queued: 105, 18KiB Wites Queued:
Read Di spat ches: 22, 60KiB Wite D spatches:
Reads Requeued: 0 Wites Requeued:
Reads Conpl et ed: 22, 60KiB Wites Conpl et ed:
Read Mer ges: 83 Wite Merges:
| O unpl ugs: 718 T Ti mer unpl ugs:

oL

Throughput (R/W: OKiB/s /-39, 806Ki B/ 0%‘0?

Events (sdao): 324,011 entries Qggb

Skips: 0 forward (O - 0. 0% Pd%

77,382,
7,329,

68, 844
65
414

14, 541,
6, 207,
1408
“12. 300,
10, 968
65
287

92, 546,
13, 714,

1, 414
12, 300,
80, 246

718

~ blktrace: Summary Output

5, 865M B

3,020M B

- Op
OKi B

2,578M B

~ Losams N
’ ¢
5’@6\9\6\

cO

N

8,579M B
5, 059M B

5, 059M B

12

blktrace: Event Storage Choices

* Physical disk backed file system

— Pros: large/permanent amount of storage available; supported by all kernels

— Cons: potentially higher system impact; may negatively impact devices being watched (if
storing on the same bus that other devices are being watched on...)

* RAM disk backed file system

— Pros: predictable system impact (RAM allocated at boot); less impact to I/O subsystem

— Cons: limited/temporary storage size; removes RAM from system (even when not tracing);
may require reboot/kernel build

e TMPFS

— Pros: less impact to I/O subsystem; included in most kernels; only utilizes system RAM while
events are stored

— Cons: limited/temporary storage; impacts system predictability — RAM “removed” as events
are stored — could affect application being “watched”

13

blktrace: Analysis Aid

* As noted previously, blktrace does not analyze
the data; 1t 1s responsible for storing and
formatting events

* Need to develop post-processing analysis tools

— Can work on formatted output or binary data stored
by blktrace 1tselt

— Example: bt — block trace timeline

14

Practical blktrace

 Here at HP OSLO S&P, we are investigating 1/0
scalability at various levels

— Including the efficiency of various hardware configurations
and the effects on I/O performance caused by software RAID

(MD and DM)

* blktrace enables us to determine scalability 1ssues within

the block I/0 layer and

| the overhead costs induced when

utilizing software RA

15

[ife of an I/0 (simplified)

* I/O enters block layer — it can be:

— Remapped onto another device (MD, DM)
— Split into 2 separate I/Os (alignment, size, ...)
— Added to the request queue
— Merged with a previous entry on the queue
All I/0s end up on a request queue at some point
e At some later time, the I/0 1s 1ssued to a device driver,
and submitted to a device

e Later, the I/O 1s completed by the device, and its driver

16

brt: Life of an I/0O

Q2I — time 1t takes to process an 1/O prior to 1t being
inserted or merged onto a request queue

— Includes split, and remap time

I2D — time the I/O 1s “idle” on the request queue

D2C — time the I/0 1s “active” 1n the driver and on the
device

Q2I + I2D + D2C = Q2C
- Q2C: Total processing time of the I/0

17

Ky
(0)
4&

brt. Partial Output i"“%@

S
Sﬁﬁﬁgo DEV \#Q #D Ratio BLKm n BLKavg BLKnax Tota
3 , 0] 92827 12401 109 1024/30120441

108 1024 10150343

1
, 1] 93390 13676 1
1 109 1024 10119302
1
1

[8

[8

[8, 2] 92366 13052
[8 109 1024 10119043
[8

. 3] 92278 13616
109 ‘1024 10119903

, 4] 92651 13736

0] \0. 049697430 0.302734498 0.074038617 0.400079555
0. 031665593 0. 050032148 0. 058669682 0. 125934697 /
. 035651772 0.031035436 0.047311659 0. 096735504
0. 021047776 0.011161007 0. 038519804 0. 060975408
0. 028985217 0.008397228 0.034344640 0. 058160497

71.0%6% 17, 4% \ “2,
35.6% 41.8% &, \ S
27.2% 41.5% 45 oy %,
15.8% 54.5% ‘Y, he. / o
11. 7% 47.9% e, Y, ~

18

brt. Q&C Activity

* prt also generates “‘activity” data — indicating
ranges where processes and devices are actively
handling various events (block I/0 entered, 1/0
inserted/merged, 1/0 1ssued, I/0O complete, ...)

* This data can be plotted (e.g. xmgrace) to see
patterns and extract information concerning
anomalous behavior

19

brt. 1/0 Scheduler Example

Q&C Activity

as.whole (0.15 delta)

oo
wextd
ush

31

11%

-~
I [z | T T I I

Activity H y W N

o i

Activity/ / \~

|

L 5 / I-'IZII I. A |) 2.0 — 2.5 — 3-0 — a5
mkfs & pdflush Runtime
“fight” for device

20

btt: I/0O Scheduler - Explained

Characterizing I/0 stack
Noticed very long 12D times for certain processes

Graph shows continuous stream of 1/0s...

— ...at the device level

— ...for the mkfs.ext3 process
Graph shows significant lag for pdflush daemon
— Last I/O enters block 1/O layer around 19 seconds

— But: last batch of I/Os aren't completed until 14 seconds later!

Cause? Anticipatory scheduler — allows mkfs.ext3 to proceed,
holding off pdflush I/Os

21

Resources

e Kernel sources:

— Patch for Linux 2.6.14-rc3 (or later, up to 2.6.17)
— Linux 2.6.17 (or later) — built in

e Utilities & documentation (& kernel patches)

— rsync://rsync.kernel.org/pub/scm/linux/kernel/git/axboe/blktrace.git

— See documentation in doc directory

* Mailing list: linux-btrace @vger.kernel.org

22

mailto:linux-btrace@vger.kernel.org

