Block I/O Layer Tracing: blktrace

Gelato – Cupertino, CA April 2006

Alan D. Brunelle

Hewlett-Packard Company

Open Source and Linux Organization Scalability & Performance Group

Alan.Brunelle@hp.com

Introduction

- Blktrace overview of a new Linux capability
 - Ability to see what's going on inside the block I/O layer
 - "You can't count what you can't measure"
 - Kernel implementation
 - Description of user applications
- Sample Output & Analysis

Problem Statement

• Need to know the specific operations performed upon *each* I/O submitted into the block I/O layer

• Who?

- Kernel developers in the I/O path:
 - Block I/O layer, I/O scheduler, software RAID, file system, ...
- Performance analysis engineers HP OSLO S&P...

Block I/O Layer (simplified)

iostat

- The iostat utility *does* provide information pertaining to request queues associated with specifics devices
 - Average I/O time on queue, number of merges, number of blocks read/written, ...
- However, it does *not* provide detailed information on a per-I/O basis

Blktrace – to the rescue!

- Developed and maintained by Jens Axboe (block I/O layer maintainer)
 - My additions included adding threads & utility splitting, DM remap events, blkrawverify utility, binary dump feature, testing, kernel/utility patches, and documentation.
- Low-overhead, configurable kernel component which emits *events* for specific operations performed on each I/O entering the block I/O layer
- Set of tools which extract and format these events

However, blktrace is **not** an analysis tool!

Feature List

- Provides detailed block layer information concerning individual I/Os
- Low-overhead kernel tracing mechanism
 - Seeing less than 2% hits to application performance in relatively stressful I/O situations
- Configurable:
 - Specify 1 or more physical or logical devices (including MD and DM (LVM2))
 - User-selectable events can specify filter at event acquisition and/or when formatting output
- Supports both "live" and "playback" tracing

Events Captured

- Request queue entry allocated
- Sleep during request queue allocation
- Request queue insertion
- Front/back merge of I/O on request queue
- Re-queue of a request

- Request issued to underlying block dev
- Request queue plug/unplug op
- I/O split/bounce operation
- I/O remap
 - MD or DM
- Request completed

blktrace: General Architecture

blktrace Utilities

- *blktrace:* Device configuration, and event extraction utility
 - Store events in (long) term storage
 - Or, pipe to blkparse utility for live tracing
 - Also: networking feature to remote events for parsing on another machine
- blkparse: Event formatting utility
 - Supports textual or binary dump output

blktrace: Event Output

```
Process
Dev <mjr, mnr>
      blktrace -d /dev/sda -o - | blkparse -i -
              1 0.00000000 697 G W 223490 + 8 [kjournald]
          3 2 0.000001829 697 P R [kjournald]
          3 3 0.000002197 697
                                 Q W 223490 + 8 [kjournald]
      8,0
          3 4 0.000005533 697 M W 223498 + 8
                                                  [kjournald]
CPU
      8,0
          3 5 0.000008607 697 M W 223506 + 8
                                                  [kjournald]
          3 10 0.000024062 697 D W 223490 + 56 [kjournald]
          1 11 0.009507758
                                   W 223490 + 56
 Sequence
 Number
                Time
                                           Start block + number of blocks
                                    Event
                Stamp
```

blktrace: Summary Output

Per CPU	ge.					5,865MiB 3,020MiB				
	CPU0 (sdao):						۸.			
Sor	Reads Queued:	0,	0KiB	Writes Queued:	77,382,	5,865MiB	Mitt			
•	Read Dispatches:	0,	0KiB	Write Dispatches:	7,329,	3,020MiB	$^{\prime\prime}e_{Q_{\alpha}}$			
	Reads Requeued:	0		Writes Requeued:	6					
	Reads Completed:	0,	0KiB	Writes Completed:	0,	0KiB				
	Read Merges:	0		Write Merges:	68,844					
	Read depth:	2		Write depth:	65					
	IO unplugs:	414		Timer unplugs:	414					
	 CPU3 (sdao):									
	Reads Queued:	105,	18KiB	Writes Queued:	14,541,	2.578MiB				
	Read Dispatches:	22,	60KiB	Write Dispatches:	6,207,	1,964MiB	4 00			
	Reads Requeued:	0		Writes Requeued:	1,408		ted or			
	Reads Completed:	22,	60KiB	-	12,300,	5,059MiB	plece			
	Read Merges:	83		Write Merges:	10,968	com				
_	Read depth:	2		Write depth:	65	trites				
ive	IO unplugs:	287		Timer unplugs:	287	2,578MiB 1,964MiB 5,059MiB WriteS				
er device	Total (sdao):									
15 15 P	Reads Queued:	105,	18KiB	Writes Queued:	92,546,	8,579MiB				
2 stide	Read Dispatches:	22,	60KiB		13,714,	5,059MiB				
Q.	Reads Requeued:	0		Writes Requeued:	1,414	,				
	Reads Completed:	22,	60KiB	=	12,300,	5,059МіВ				
	Read Merges:	83		Write Merges:	80,246	•				
	IO unplugs:	718		Timer unplugs:	718					
	ml l / T/T/ - OT	z'. D /	(W'D (hout						
	Throughput (R/W): 0KiB/s / 39,806KiB/s Events (sdao): 324,011 entries Skips: 0 forward (0 - 0.0%)									
		o og/	o th	Me						
	Skips: 0 forward (0	- 0.0%)	MA							
)							

blktrace: Event Storage Choices

Physical disk backed file system

- *Pros*: large/permanent amount of storage available; supported by all kernels
- *Cons*: potentially higher system impact; may negatively impact devices being watched (if storing on the same bus that other devices are being watched on...)

RAM disk backed file system

- *Pros*: predictable system impact (RAM allocated at boot); less impact to I/O subsystem
- Cons: limited/temporary storage size; removes RAM from system (even when not tracing);
 may require reboot/kernel build

TMPFS

- Pros: less impact to I/O subsystem; included in most kernels; only utilizes system RAM while events are stored
- *Cons*: limited/temporary storage; impacts system predictability RAM "removed" as events are stored could affect application being "watched"

blktrace: Analysis Aid

- As noted previously, *blktrace* does <u>not</u> analyze the data; it is responsible for storing and formatting events
- Need to develop post-processing analysis tools
 - Can work on formatted output or binary data stored by *blktrace* itself
 - Example: *btt* block trace timeline

Practical blktrace

- Here at HP OSLO S&P, we are investigating I/O scalability at various levels
 - Including the efficiency of various hardware configurations and the effects on I/O performance caused by software RAID (MD and DM)
- *blktrace* enables us to determine scalability issues within the block I/O layer and the overhead costs induced when utilizing software RAID

Life of an I/O (simplified)

- I/O enters block layer it can be:
 - Remapped onto another device (MD, DM)
 - Split into 2 separate I/Os (alignment, size, ...)
 - Added to the request queue
 - Merged with a previous entry on the queue

All I/Os end up on a request queue at some point

- At some later time, the I/O is issued to a device driver, and submitted to a device
- Later, the I/O is completed by the device, and its driver

btt: Life of an I/O

- Q2I time it takes to process an I/O *prior* to it being inserted or merged onto a request queue
 - Includes split, and remap time
- I2D time the I/O is "idle" on the request queue
- D2C time the I/O is "active" in the driver and on the device
- Q2I + I2D + D2C = Q2C
 - Q2C: Total processing time of the I/O

btt: Partial Output Time

y.— -	_												
	DEV	\	#Q	#D I	Ratio	BLKmi	n B	LKavg	BLKma	x Tota	al		
	[8, [8, [8,	1] 2] 3]	92827 93390 92366 92278 92651	13676 1305 13616	6.8 7.1 6.8		1 1 1 1	109 108 109 109 109	102 102 102	4 1012 4 1013 4 1013 4 1013 4 1013	50343 19302 19043	A	
i kita	DEV		Q2I		I2D		_ D2	C	Q)2C		Avolto	tim
ti priority	[8,	_	\	565593	3 0.05	273449 003214 103543	8 0.	058669	682 0	.1259	34697	<i>/</i>	16
\	[8,		0.0210			116100 839722				.0581	60497		
	DEV		Q2I	I2D	D2						Driver		
	[8,	1]	11.78 22.68 31.38 29.88	35 . 27 .	.2% 4	7.4% 1.8% 1.5% 4.5%	$-\mathcal{E}_{\mathcal{X}_{0}}$	Cessive Si Sucue			Driver De	Vice time	
	[8,	4]	40.49	š 11.	.7% 4	7.9%		· queue	time	On -			
													1 0

btt: Q&C Activity

- *btt* also generates "activity" data indicating ranges where processes and devices are actively handling various events (block I/O entered, I/O inserted/merged, I/O issued, I/O complete, ...)
- This data can be plotted (e.g. xmgrace) to see patterns and extract information concerning anomalous behavior

btt: I/O Scheduler Example

btt: I/O Scheduler - Explained

- Characterizing I/O stack
- Noticed very long I2D times for certain processes
- Graph shows continuous stream of I/Os...
 - ...at the device level
 - ...for the *mkfs.ext3* process
- Graph shows significant lag for *pdflush* daemon
 - Last I/O enters block I/O layer around 19 seconds
 - But: last batch of I/Os aren't completed until 14 seconds later!
- Cause? Anticipatory scheduler allows mkfs.ext3 to proceed, holding off pdflush I/Os

Resources

- Kernel sources:
 - Patch for Linux 2.6.14-rc3 (or later, up to 2.6.17)
 - Linux 2.6.17 (or later) built in
- Utilities & documentation (& kernel patches)
 - rsync://rsync.kernel.org/pub/scm/linux/kernel/git/axboe/blktrace.git
 - See documentation in *doc* directory
- Mailing list: linux-btrace@vger.kernel.org